SYMBOLS FOR THERMODYNAMICAL AND PHYSICO-CHEMICAL QUANTITIES AND CONVENTIONS RELATING TO THEIR USE, ADOPTED AS RECOMMENDED PRACTICE BY THE CHEMICAL SOCIETY.

(Where two or more symbols separated by commas or semicolons are given for a quantity, these symbols are to be regarded as alternatives for which no preference is expressed. On the other hand, where two symbols are separated by a dotted line, the former is the first preference.)

1. To be Printed in Black Italic.

(Certain important physical constants.)

F Faraday's constant. Mechanical equivalent of heat. N Avogadro's number. Gas constant per mol. R Rydberg's constant. Velocity of light in vacuo. Electronic charge (charge equal and opposite in sign to that of an electron). e Acceleration due to gravity (standard value, if variation from standard is \boldsymbol{g} significant). Planck's constant. ħ Boltzmann's constant. Rest mass of an electron.

2. To be Printed in Ordinary Italic, when not Greek.

General Physics and Chemistry

	Gene	rai Pi	nysics	ana (nemi	siry	'•
Length						•),
mean free path	of mo	lecule	s				} <i>t</i>
height							h
diameter, distance	e						d
diameter of mo							σ
radius	•		•	•			r
M							***
Mass	•	•	•	•	•	•	m
molecular weight	•	•	•	•	•		M
atomic weight	•	•	•	•	•	٠	$\frac{A}{2}$
atomic number		•	•	•	•	•	Z
gram-equivalent	weight	•	•	•	•	•	Z, J
Time		_					t
time interval, esp	ecially	half-	or me	ean-lif	fe.	•	τ
frequency .	001411	11011	01 111			Ċ	ν
- •	•	•	•	•	•	•	·
Velocity	•			•			v; c , (u, v, w)
of ions .	•			•	•		u (with subscript)
angular .		•		•		•	ω
Acceleration .		•	•		•		$f \dots a$
due to gravity (as	s varia	ıble)	•	•	•		g
Force							F (Y V 7)
Moment of inertia	•	•	•	•	•	•	F, (X, Y, Z)
-				•	•	•	_
Pressure		•	•	•	•	•	p, P
especially osmotic	с.	•	•	•	•	•	Π
Volume				•			v, V
Density	•	•		•	•		$\rho \dots d$
Compressibility				•	•		$\kappa \dots K$

Viscosity Fluidity .	•	•	•				•	$oldsymbol{\eta}{\phi}$
Surface area Angle of cont	act	•		•		•	•	θ s
Surface tension	n	•	•	•	•	•	•	$\gamma \dots \sigma$
Parachor			•	•	•	•	•	$\stackrel{[P]}{arGamma}$
Surface conce		n exce	ess	•	•	•	•	1
Number of m		•	•	•	•	•	•	n
Concentration				•	•	•	•	N, x
C 1. 1.1114	in ot	ner te	rms	•	•	•	•	c, C s
Solubility Diffusion coef	ficient	•	•	•	•	•	•	D
			•	٠,	•	•		
Chemical equi								K K L
solubility p Velocity cons Number of m	tont of	chem	ical r	eactic	n n	•	•	k
Number of m	olecula	r colli	sions	per s	econd	•	•	\ddot{Z}
Partition fun	.0100				•	•		\overline{f}
Efficiency, of Wave function		ocess	•	•	•	•	•	$\overset{\eta}{\psi}$
wave function	111	•	•	•	•	•	•	Ψ
			Heat	and I	Therm	odyna	mic.	s.
Temperature	, on ab	solute	scale	, (°K)				T
_	on oth		ales		•	•	•	$\theta \dots t$
Thermal cond	ductivi	ty	•	•	•	•	•	k
Energy (gene	eral syn	nbol)	•	•			•	\boldsymbol{E}
Work done b	y or or	a sys	stem		•	•		$w \dots W$
Heat enterin		tem	•	•	•	•	•	q
Specific heat		•	•	•	•	•	•	c_p and c_v
molecular	heat	•	•	•	•	•	•	C_p and C
Ratio of spec	one nea	ats	•	•	•	•	•	Ÿ
Latent heat,	per mo		•	•	•	•	•	Ĺ
	-	,1	•	•		•	•	
Intrinsic ene Enthalpy, to	rgy				. 4	•	•	$U\ldots E$
	tai nea	t, or	near c			•	•	S
Entropy . Free energy	(Helml	· noltz)	•	•	•	•	•	$A \dots F$
Thermodyna	mic po	otenti	al. G	ibbs	funct	ion, f	ree	
energy (G. N. 1	Lewis)				•		$oldsymbol{G}$
								i
Vapour pres	sure co	nstan	ι.	•	•	•	•	r
Chemical po	tential		•	•	•	•	•	$oldsymbol{\mu}$
Activity .	•	•	•	· ·	.•	•	•	a
coefficient			oncen	tratio	on)	•	•	f
Osmotic coe			•	•	•	•	•	$\overset{\mathcal{g}}{i}$
Van 't Hoff'	s racto		•		•	•	•	r
				E	lectri	city.		
Quantity of	alectri	city				-		0
especially	electro	static	char	ge ·	•	•		e e
Potential (d	ifference	ce)			•	•	:) 17
Volta pot				•	•			j v
electrokin	etic po	tentia	ıl.	•	•			ζ
especially	electro	motiv	ve for	ce of	voltai	c cells		E
Potential gr	adient,	in ele	ectric	field		•	•	X
Electronic e	xit wo	rk fun	ction	•	•	•	•	ϕ

						T
Current	•	•	•	•	•	I
Resistance	•	•	•	•	•	R
specific resistance.	•	•	•	•	•	$\rho \dots r$
specific conductance	•		•	•	•	κσ
Inductance, self .			_	_		L
mutual.	•	•	•	•	•	M ·
Electrostatic capacity		•	•	•	•	\tilde{c}
Dielectric constant .	•	•	•	•	•	€
Dielectric constant .	•	•	•	•	•	•
Dipole moment .	•	•	•	•	•	μ
		Elec	troche	mistry		
Degree of electrolytic dis	sociati	ion	_			α
Valency of an ion	occiae.			·		z
Valency of an ion . Ionic strength	•	•	•	•	•	\tilde{I}
-		•	•	•	•	
Equivalent conductance		•	•	•	•	Ά
equivalent ionic condu	ctance	e, " n	nobilit	у"		l (with subscript)
Transport number .						T (with subscript)
•						n (with subscript)
Single electrode potentia	Ι.	•	•			e (with subscript),
		1.				E (with subscript)
Electrolytic polarisation,	overv	oltag	ge .	•	•	η π
		M	agnet	ism.		
Magnetic field strength						H
		•	•	•	•	
flux permeability	•	•	•	•	•	φ
permeability		•	•	•	•	μ
susceptibility—			•	•	•	κ
	mass		•	•	•	X
moment .	•	•	•	•	•	M
induction .	•	•	•	•	•	B
			.			
			Optio	· S .		
Wave length			Optio.	٠.		λ
Wave number			Optio	· ·		λ_{ν}
Wave number			Optio	· ·	•	
			Optio	· · ·	•	v I n (with subscript)
Wave number Intensity of light . Refractive index .	•	•	Optio	· · ·		ν I n (with subscript) μ (with subscript)
Wave number Intensity of light . Refractive index . specific refraction .		•		· · · · · · · · · · · · · · · · · · ·		v I n (with subscript)
Wave number Intensity of light . Refractive index . specific refraction .			Optio	· · · · · · · · · · · · · · · · · · ·		 ν I n (with subscript) μ (with subscript) r (with subscript)
Wave number Intensity of light . Refractive index .			•			ν I n (with subscript) μ (with subscript)
Wave number Intensity of light . Refractive index	· · ent		•			 ν I n (with subscript) μ (with subscript) r (with subscript) [R] (with subscript)
Wave number Intensity of light . Refractive index	· · ent		•			 ν I n (with subscript) μ (with subscript) r (with subscript) [R] (with subscript) ε
Wave number Intensity of light . Refractive index	ent n		•			ν I n (with subscript) $\dots \mu$ (with subscript) r (with subscript) $[R]$ (with subscript) ϵ α $[\alpha]$
Wave number Intensity of light . Refractive index	ent n		•			 ν I n (with subscript) μ (with subscript) r (with subscript) [R] (with subscript) ε
Wave number Intensity of light . Refractive index	ent on on	•				ν I n (with subscript) $\dots \mu$ (with subscript) r (with subscript) $[R]$ (with subscript) ϵ α $[\alpha]$
Wave number Intensity of light . Refractive index	ent on on on	d in	Ror			 ν I n (with subscript) μ (with subscript) r (with subscript) [R] (with subscript) ε α [α] ω
Wave number	ent ent on rinte	d in	Ror			n (with subscript) n (with subscript) r (with subscript) [R] (with subscript) ε α [α] ω en not Greek. s and Operators.
Wave number	ent ent en n Printe	d in	Ror			n (with subscript) n (with subscript) r (with subscript) [R] (with subscript) α [α] ω en not Greek. s and Operators. e
Wave number	ent ent en n Printe	d in	Ror			 ν I n (with subscript) μ (with subscript) r (with subscript) [R] (with subscript) ε α [α] ω en not Greek. s and Operators. e π
Wave number	ent ent en n Printe	d in	Ror			 ν I n (with subscript) μ (with subscript) r (with subscript) [R] (with subscript) ε α [α] ω en not Greek. s and Operators. e π d
Wave number	ent ent en n Printe	d in	Ror			 ν I n (with subscript) μ (with subscript) r (with subscript) [R] (with subscript) ε α [α] ω en not Greek. s and Operators. e π
Wave number	ent ent en n Printe	d in	Ror			n (with subscript) n (with subscript) r (with subscript) [R] (with subscript) α [α] ω n not Greek. s and Operators. e π d ∂ Δ
Wave number	ent ent en n Printe	d in	Ror			n (with subscript) n (with subscript) r (with subscript) [R] (with subscript) α [α] ω n not Greek. s and Operators. e π d d d Δ δ
Wave number	ent ent en n Printe	d in	Ror			n (with subscript) n (with subscript) r (with subscript) [R] (with subscript) α [α] ω n not Greek. s and Operators. e π d ∂ Δ
Wave number	ent ent en n Printe	d in	Ror			n (with subscript) n (with subscript) r (with subscript) [R] (with subscript) α [α] ω n not Greek. s and Operators. e π d d d Δ δ
Wave number	ent ent en n Printe	d in	Ror			n (with subscript) n (with subscript) r (with subscript) [R] (with subscript) α [α] ω n not Greek. s and Operators. e π d ∂ Δ δ Σ

(b) Examples of single-letter abbreviations

*Ampère	(in su	b-uni	ts)		•	•			a.
Volt	•	•	•	•	•	•	•		v.
Ohm	•	•		•	•	•	•	•	Ω.
Watt							•.		w.
Farad		. •							F.
Henry	•			•	•	•	•		H.
Centigrad	le	•							c.
Fahrenhe						•			F.
Kelvin	•		•			•	•		ĸ.
Ångstron	ı unit				•				Α.
micron		•	•						μ.
metre		•	•		•		•		m.
gram									g.
litre		•							Ĭ.
Röntgen	unit		•						r.
†Normal	(conc	entrat	ion)						N.
†Molar (d									М.

The following prefixes to abbreviations for the names of units should be used to indicate the specified multiples or sub-multiples of these units:

M	mega-	$10^6 \times$
k	kilo-	$10^3 \times$
d	deci-	$10^{-1} \times$
c	centi-	$10^{-2} \times$
m	milli-	$10^{-3} \times$
u	micro-	$10^{-6} \times$

e.g., M Ω . denotes megohm; kw., kilowatt; and µg., microgram. The use of µµ. instead of mµ. to denote 10^{-7} cm., or of γ to denote microgram is deprecated.

4. Subscripts and other Modifying Signs.

(a) Subscripts to symbols for quantities.

I, II 1, 2 A B . i	(especially with symbols for thermodynamic functions, referring to different systems or different states of a system. referring to molecular species A, B, etc. referring to a typical ionic species i. referring to an undissociated molecule.
+,	referring to a positive or negative ion, or to a positive or negative electrode.
p. v. T q w	indicating constant pressure, volume, and temperature respectively. indicating adiabatic conditions. indicating that no work is performed. with symbol for an equilibrium constant, indicating that it is
р, с, а	expressed in terms of pressure, concentration, or activity.
G, V, L, X	referring to gas, vapour, liquid, and crystalline states, respectively.
f, e, s, t, d	referring to fusion, evaporation (vaporisation of liquid), sublimation, transition, and dissolution or dilution respectively.
o	referring to the critical state or indicating a critical value.
0	referring to a standard state, or indicating limiting value at infinite dilution.

^{*} E.g. "ma." for "milliampère"; but "amp." is preferred for "ampère." † Separated by a hyphen (and no full stop) from a chemical formula which follows it.

O, D. F with symbols for optical properties, referring to a particular wavelength.

Where a subscript has to be added to a symbol which already carries a subscript, the two subscripts may be separated by a comma or the symbol with the first subscript may be enclosed in parentheses with the second subscript outside.

(b) Other modifying signs.

o as right-hand superscript to symbol (particularly to a symbol for a general thermodynamic function—see p. 718), referring to a standard state.

[] enclosing formula of chemical substance, indicating its molar concentration.

{ } enclosing formula of chemical substance, indicating its molar activity.

In crystallography it is recommended that:

Millerian indices be enclosed in parentheses, ();

Laue indices be unenclosed;

Indices of a plane family be enclosed in braces, { };

Indices of a zone axis or line be enclosed in brackets, [].

Numerals attached to a symbol for a chemical element in various positions have the following meanings:

upper left mass number of atom.

lower left nuclear charge of atom.

lower right number of atoms in molecule.

e.g., ${}_{3}^{7}\text{Li}$; ${}_{1}^{2}\text{H}_{2}$ (= D_{2}).

ALPHABETICAL INDEX OF RECOMMENDED SYMBOLS, and single-letter abbreviations.

including all those given in the above lists except prefixes, subscripts and other modifying signs.

The name of any quantity for which a given symbol is a second preference is printed in parentheses.

- A free energy—Helmholtz; atomic weight; surface area.
- A. Angstrom unit.
- a activity; (acceleration).
- a. ampère, in sub-units—see footnote, p. 720.
- B magnetic induction.
- C concentration; electrostatic capacity. with subscript: molecular heat capacity.
- c. Centigrade.
- velocity of light in vacuo.
- c velocity; concentration.

 with subscript: specific heat.
- D diffusion coefficient.
- d diameter; distance; (density).
- d differential.
- ∂ partial differential.
- E energy; (intrinsic energy); potential difference, especially electromotive force of voltaic cells.
- with subscript: single electrode potential.
 electronic charge—charge equal and opposite in sign to that of an electron.
- e quantity of electricity, especially electrostatic charge. with subscript: single electrode potential.

```
base of natural logarithms.
F
    Faraday's constant.
F
    force; (free energy—Helmholtz).
    farad; Fahrenheit.
F.
    acceleration; activity coefficient, for molar concentration; partition
       function.
f
    function.
G
    thermodynamic potential, Gibbs function, free energy—G. N. Lewis.
    acceleration due to gravity, standard value.
\boldsymbol{g}
    acceleration due to gravity, as a variable; osmotic coefficient.
g
H
    enthalpy, total heat, heat content; magnetic field strength.
H.
    henry.
    Planck's constant.
h
    height.
h
Ι
    moment of inertia; ionic strength; electric current; intensity of light.
    vapour pressure constant; van 't Hoff's factor.
    mechanical equivalent of heat.
    gram-equivalent weight.
    chemical equilibrium constant; (compressibility).
    K, solubility product.
    Kelvin.
ĸ.
    Boltzmann's constant.
k
k
    thermal conductivity; velocity constant of chemical reaction.
L
    latent heat per mol; self inductance; (solubility product).
    latent heat per g.; length; mean free path of molecules.
    with subscript: equivalent ionic conductance, "mobility".
1.
    litre.
M
    molecular weight; mutual inductance; magnetic moment.
    molar concentration.
М.
rest mass of an electron.
    mass.
m
m. metre.
N Avogadro's number.
N
    mol fraction.
N.
    normal concentration.
    number of mols.
    with subscript: (transport number).
    with subscript: refractive index.
\boldsymbol{P}
    pressure.
[P] parachor.
\stackrel{p}{Q}
    pressure.
    quantity of electricity.
    heat entering a system.
    gas constant per mol; Rydberg's constant.
\boldsymbol{R}
R
    electrical resistance.
[R] with subscript: molecular refraction.
    radius; (specific resistance).
    with subscript: specific refraction.
r.
    Röntgen unit.
S
    entropy.
    solubility; (surface area).
T
    temperature, on absolute Kelvin scale.
    with subscript: transport number.
    time; (temperature—not on absolute scale).
U
    intrinsic energy.
    velocity component.
    with subscript: velocity of ions.
```

volume; potential, potential difference, including Volta potential.

- volt. V.
- volume; velocity; velocity component.
- (work done by or on a system).
- w. watt.
- work done by or on a system; velocity component. w
- X force component; potential gradient in electric field.
- mol fraction.
- Y force component.
- \boldsymbol{Z} force component; g.-equivalent weight; number of molecular collisions per second; atomic number.
- Z valency of an ion.
- degree of electrolytic dissociation; angle of optical rotation. α
- $[\alpha]$ specific optical rotation.
- surface concentration excess.
- ratio of specific heats; surface tension.
- increment.
- very small increment.
- dielectric constant; molar extinction coefficient.
- electrokinetic potential.
- efficiency of any process; viscosity; electrolytic polarisation, overvoltage.
- angle of contact; temperature—not on absolute scale.
- compressibility; specific conductance; magnetic susceptibility—volume.
- Λ equivalent conductance.
- λ wave length.
- chemical potential; dipole moment; magnetic permeability. with subscript: (refractive index).
- u. micron.
- frequency; wave number.
- Π pressure, especially osmotic pressure.
- П product.
- (electrolytic polarisation, overvoltage). π
- ratio of circumference to diameter.
- density; specific resistance. Σ
- sum.
- diameter of molecules; (surface tension); (specific conductance).
- time interval, especially half or mean life.
- fluidity; electronic exit work function; magnetic flux.
- function.
- magnetic susceptibility-mass.
- wave function.
- ohm.
- angular velocity; specific magnetic rotation.